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Kinetics of phase separation in ternary mixtures
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We present detailed results from Monte Carlo simulations of the kinetics of phase separation in ternary
mixtures. We focus on the case ofABV mixtures ~whereV denotes a vacancy! and investigate segregation
kinetics resulting fromV-mediated dynamics. We provide heuristic arguments for the existence of different
morphologies in various parameter regimes. Furthermore, we present comprehensive numerical results for
various characteristic features of the domain growth process, e.g., real-space correlation functions, domain-size
distribution functions, and growth laws.
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I. INTRODUCTION

Much recent interest has focused on the kinetics of ph
separation of homogeneous multicomponent mixtures, wh
have been rendered thermodynamically unstable by a r
change of parameters, e.g., temperature@1–3#. Studies in this
area have primarily focused on two-component or bin
(AB) mixtures. In that case, the evolving system segreg
into A- andB-rich domains with a characteristic length sca
L(t), where t is the time after the quench. These doma
coarsen with time because it is energetically favorable
eliminate domain boundaries. The coarsening mechani
can be either diffusive~e.g., binary alloys! or hydrodynamic
~e.g., binary fluids!, and the domain growth law depends o
the relevant coarsening mechanism@3#. If growth is driven
by diffusion, we haveL(t);t1/3 for dimensionalityd>2,
which is referred to as the Lifshitz-Slyozov~LS! growth law
@4#. If the primary growth mechanism is hydrodynamic, w
haveL(t);tx, wherex takes a range of different values—
depending on the time regime and the dimensionality@5,3#.

There have been many experiments and numerical si
lations of phase separation in binary mixtures, and th
have greatly enhanced our understanding of this problem
the analytical level, we have a good understanding of vari
mechanisms for domain growth and the resultant gro
laws @3#. However, more quantitative attempts to charact
ize the morphology using the real-space correlation func
~or its Fourier transform, the momentum-space structure
tor! have met with limited analytical success–except in
limit where one of the components is present in a vani
ingly small fraction@4#.

Apart from domain growth laws and morphology, it
also relevant to examine the autocorrelation function in
far-from-equilibrium evolution of the phase-separating s
tem. There are very few studies of this experimentally r
evant quantity@6,7#. Marko and Barkema~MB! @6# have pre-
sented numerical results for the autocorrelation funct
F(t0 ,t) in the phase separation of binary mixtures, witht0
being an initial reference time. MB argue that their nume
cal data is consistent with a power-law decayF(t0 ,t)
;(t0 /t)u, where the value ofu depends on whether or nott0
is in the scaling regime. Fort0 in the scaling regime, MB
report thatu.1.0 for d52 andu.0.5 for d53.

In this paper, we undertake a comprehensive Monte C
1063-651X/2001/64~5!/056139~10!/$20.00 64 0561
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~MC! study of phase-separation kinetics in three-compon
or ternary (ABC) mixtures. To date, there has been on
limited investigation of these systems, which are of gr
experimental significance. In particular, we will focus on t
range of possible morphologies of the segregating mixtu
and the corresponding dynamical behaviors, as character
by various standard tools.

In a more general context, our study is relevant for s
tems with two coupled order parameters, e.g.,3He-4He mix-
tures, binary alloys with one ferromagnetic component, e
Clearly, the underlying phase diagrams and domain m
phologies in these systems are considerably more com
than for systems with a single-order parameter. It is of ob
ous interest to study domain coarsening in different regim
of the phase diagram. An interesting feature is the existe
of two types of domain morphologies in the regime of thre
phase coexistence. We show that the existence of these
phologies can be understood using simple energetic a
ments.

This paper is organized as follows. In Sec. II, we provi
an overview of earlier studies of phase separation in tern
mixtures. This overview will provide the context for ou
present study. In Sec. III, we provide a brief discussion of
phase diagrams and domain morphologies that are rele
for our dynamical studies. In Sec. IV, we present detai
results for characteristic properties of phase-separating
nary mixtures. Finally, Sec. V concludes this paper with
summary and discussion of our results.

II. OVERVIEW OF EARLIER STUDIES

As a prelude to our discussion of earlier studies, it
convenient to introduce the model Hamiltonian for a terna
mixture. We consider a ternary (ABC) mixture on a discrete
lattice ~having cubic symmetry! with N sites, and assume
that there are only nearest-neighbor interactions w
strength eab between speciesa and b. ~We take eab
5eba .) The appropriate Hamiltonian is

H5(
a,b

eab(̂
i j &

ni
anj

b2(
a

ma(
i

ni
a , ~1!

whereni
aP$0,1% refers to the occupation number for speci

a at site i, the variablesa and b take three values, corre
©2001 The American Physical Society39-1
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KUMELA TAFA, SANJAY PURI, AND DEEPAK KUMAR PHYSICAL REVIEW E 64 056139
sponding to elemental speciesA, B, C, and(^ i j & refers to a
sum over nearest-neighbor pairs. We also include chem
potential terms, withma denoting the chemical potential o
speciesa, as this gives us the flexibility to choose the be
ensemble to obtain relevant phase diagrams. As usual
have the constraintni

A1ni
B1ni

C51.
It is convenient to map this Hamiltonian into that for

spin-1 model @8–10#. We introduce the spin variablesi
P$21,0,1%, and define

ni
A5

si
21si

2
,

ni
B5

si
22si

2
,

ni
C512si

2 . ~2!

In terms of the spin variables, the Hamiltonian assumes
form

H52J(̂
i j &

sisj2K(̂
i j &

si
2sj

22
M

2 (̂
i j &

~si
2sj1sisj

2!

2(
i

~hsi1Dsi
2!. ~3!

The interaction parameters in Eq.~3! are identified as@10#

J5
2eAB2eAA2eBB

4
,

K5
4~eAC1eBC2eCC!22eAB2eAA2eBB

4
,

M5
2~eAC2eBC!2eAA1eBB

2
,

h5
q~eBC2eAC!1mA2mB

2
,

D5
2q~eCC2eAC2eBC!1mA1mB22mC

2
, ~4!

where q is the number of nearest neighbors~coordination
number! of a lattice site. Equation~3! is the most genera
form of the Blume-Emery-Griffiths Hamiltonian@8#, first
proposed to study phase separation and superfluid orde
in 3He-4He mixtures. There have been many subsequ
studies of the phase diagram of this Hamiltonian@10–13#.

We are interested in the dynamical properties of t
Hamiltonian in conjunction with an appropriate microscop
conserved kinetics. There have already been a few nume
studies of phase-separation kinetics for this Hamiltonian w
fixed numbers of each species, and we would like to brie
summarize representative results here. In the context of fi
composition, the terms involving( isi and( isi

2 in the Hamil-
tonian of Eq.~3! are constant and need not be considere
05613
al

t
e

e

ng
nt

s

al
h
y
ed

Most earlier dynamical studies of this Hamiltonian ha
been in the context of theABV model, whereC[V ~or
vacancy! and there are no pairwise interaction terms invo
ing vacancies. Our present study also falls into this categ
This model is of great relevance in the context of vacan
mediated phase separation in alloys, where it is known
the relevant physical processes that enables segregatio
A↔V and B↔V interchanges rather thanA↔B inter-
changes@14,15#. We should stress that, in the context of t
equilibrium phase diagram, theABV model already gives
rise to the most general spin-1 Hamiltonian in Eq.~3!.

Some early MC studies of thed52 ABV model are due
to Yaldram and Binder~YB! @16#, who investigated the evo
lution morphologies arising for three sets of parameter v
ues. In each case, there was segregation inA- and B-rich
domains. The different morphologies are characterized
the distribution ofV’s as follows:

~i! J5e/2, K52e/2, M50 wheree is an energy scale
In this case, the vacancies were uniformly and randomly d
tributed throughout the system.

~ii ! J5e/2, K5e/2, M50. In this case, the vacancie
were expelled from bulkA- and B-domains and tended to
aggregate inAB interfacial regions. However, all possibl
interfaces (AV, BV, andAB) were present in the evolution
morphology.

~iii ! J5e/2, K5e/2, M5e. In this case, the vacancie
were completely expelled fromA-rich regions and macro
scopicV-rich domains were observed.

YB also made some preliminary studies of the quant
tive features of domain morphologies, but these did
probe the intermediate or late-stage behavior. Subseque
we will present heuristic arguments to systematize the
observation of different morphologies.

Another important MC study of this problem is due
Fratzl and Penrose~FP! @17#, who considered segregation i
an AB mixture mediated by a single vacancy. FP found th
domain growth mediated by a single vacancy is more ra
than domain growth via the usual Kawasaki exchan
mechanism (A↔B). Furthermore, the asymptotic doma
growth law in their study is consistent with the LS grow
law, L(t);t1/3. However, we should stress that the FP stu
differs from the YB study~and also our present study! in that
a single vacancy is irrelevant in the thermodynamic lim
Thus, the appropriate equilibrium phase diagram for the
study is the usual one for a binary mixture.

In more recent work, Puri and Sharma~PS! @18,19# have
formulated mean-field~MF! dynamical models for vacancy
mediated phase separation. These models consider
coupled dynamics of two conserved order parame
~viz., ^si& and ^si

2&), and classify as ‘‘ModelD ’’ in
critical-dynamics terminology@20–22#. PS studied these
models both numerically and analytically, and report
comprehensive numerical results for the ca
K5M50—corresponding to the case of a spin-1 Isi
model. They found that the vacancies aggregated at theAB
interfaces, thereby reducing the surface tension. Howe
domain growth is still consistent with the LS law, and th
vacancy layer at the interfaces does not impede phase s
ration. Plapp and Gouyet@23,13# have also formulated simi
9-2
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KINETICS OF PHASE SEPARATION IN TERNARY MIXTURES PHYSICAL REVIEW E64 056139
lar MF dynamical models for theABV model, and have use
them to investigate surface instabilities for droplets of
unstable mixture immersed in a stable vapor of the mixtu

In the above works, theV concentration is usually sma
as this is appropriate in the physical context of vacan
mediated phase separation in binary alloys. A complem
tary set of works has focused on segregation dynamic
n-state Potts models, where the different components of
mixture are treated on equal footing. The three-state P
model can be formulated as the spin-1 Hamiltonian in Eq.~3!
with parametersJ5e/2, K53e/2, M50. Jeppesen and
Mouritsen~JM! @24# performed a MC study of the three-sta
Potts model with Kawasaki spin-exchange~conserved! kinet-
ics. These authors considered ‘‘critical quench’’ conditio
with all components being present in equal proportions.
the JM study, the evolving morphology is characterized
distinct domains rich in either of the components with
types of interfaces present. We will later refer to this as
‘‘blob’’ morphology. JM find that the asymptotic domai
growth law is the LS law, correcting an earlier result of Gre
and Sahni@25#, who found effectively lower growth expo
nents due to transient effects. The numerical results of
have been confirmed in a recent exchange MC study
Okabe@26#.

Finally, we would like to briefly discuss an important s
of studies examining the effect of surfactants~S! on segrega-
tion dynamics of binary mixtures (AB). This system also
constitutes a ternary mixture (ABS) with the third compo-
nent~i.e., surfactant! being present in a small fraction—as
the case of vacancies in theABV model. Typically, the com-
ponentSaggregates atAB interfaces and lowers theAB sur-
face tension, so that the evolving system freezes into a
crostructure. A number of reviews and studies@27–29# have
discussed the kinetics of phase separation inABS mixtures
and we refer the interested reader to these.

III. MEAN-FIELD PHASE DIAGRAMS

In this section, we briefly review the thermodynamics
the system and present MF phase diagrams in the param
ranges relevant to our dynamical studies. We will consi
temperature quenches that are far from phase bounda
hence, MF phase diagrams suffice to describe the diffe
phases observed. All results reported in this paper are for
Hamiltonian in Eq.~3! with M50. We fix the number of
speciesA andB to be equal, i.e.,NA5NB . Under these con-
ditions, symmetry requires that all phase transitions occu
h50. Physically, the interactionJ drives phase separatio
betweenA andB, while the interactionK ~if positive! drives
phase separation betweenV and A, B. To understand the
above situation, it is useful to invoke the magnetic all
analogy, where theA andB species are interpreted as ‘‘up
and ‘‘down’’ spins of a ferromagnetic element; andV is a
nonmagnetic component. Then,J drives the paramagnetic t
ferromagnetic transition, whileK ~if positive! drives phase
separation between the magnetic and nonmagnetic com
nents.

Since we are using conserved kinetics, the appropr
ensemble for studying the phase diagram is the fix
05613
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(T,m,r) ensemble, whereT is the temperature; and the ord
parameters arem5^si& andr5^si

2&. The corresponding free
energy in the MF approximation is

F~T,m,r!

N
52

qJ

2
m22

qK

2
r21TFr1m

2
lnS r1m

2 D
1

r2m

2
lnS r2m

2 D1~12r!ln~12r!G , ~5!

where the third term on the right-hand side is the entropy
spin (kB51). The free energy in Eq.~5! can be used to
obtain qualitative features of the phase diagram and has b
extensively investigated@8,10–13#.

A simple method of obtaining the MF phase diagram p
ceeds by first considering the relevant phase diagram in
fixed-(T,h50,D) ensemble. This is obtained by solving th
following coupled transcendental equations form andr @8#,

m5
2 sinh~qbJm!

exp@2b~qKr1D!#12 cosh~qbJm!
,

r5
2 cosh~qbJm!

exp@2b~qKr1D!#12 cosh~qbJm!
. ~6!

An obvious root of Eq.~6! is (m050,r0), wherer0 solves
the transcendental equation

r05
2

exp@2b~qKr01D!#12
. ~7!

In general, Eq.~6! is solved numerically to obtain the fol
lowing features:~a! A line of second-order transitions, whic
is characterized by the emergence of three roots (0,r0),
(6ms ,rs) continuously from the single root (0,r0). The
equation of this line in the (T,D) plane isD52T ln@2(qbJ
21)#2TK/J @8#. ~b! A line of first-order transitions, which
is characterized by the emergence of five roots (0,r0),
(6m1 ,r1), (6m2 ,r2) with the free energy associated wit
(6m2 ,r2) (m2.m1) becoming lower than that associate
with (0,r0). The relevant free energy is the Legendre tra
form of F(T,m,r) in Eq. ~5!, i.e., G(T,h,D)5F(T,m,r)
2hm2Dr. The line of first-order transitions starts from
@T50, D52q(J1K)/2] and meets the second-order line
the tricritical point (Tt ,Dt). An approximate equation fo
this first-order line can be obtained in the framework of La
dau theory.

It is straightforward to map the phase diagram in t
(T,h50,D)-plane into phase diagrams with fixed compo
tion by computing the values of composition variables eith
side of the first-order transition line. The appropriate pha
diagrams in the (T,h50,r) plane are shown in Figs. 1~a!–
1~c! for d52 (q54) and K51.5,0.5,20.5. ~All energy
scales are subsequently measured in units ofJ, i.e., J51.!
These phase diagrams are appropriate in the context
binary alloy where one of the components is ferromagne
@8#. They will also serve as a useful reference point for t
dynamical simulations described subsequently.
9-3
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KUMELA TAFA, SANJAY PURI, AND DEEPAK KUMAR PHYSICAL REVIEW E 64 056139
In Fig. 1, forr51, there is a second-order transition fro
the paramagnetic to ferromagnetic phase at the tempera
Tc(1)5q. To begin with, asr is decreased the transitio
temperatureTc(r) also decreases, i.e,Tc(r)5qr. In the fer-
romagnetic phase that results, we have a two-phase re
with up (A-rich! and down (B-rich! domains withV atoms
distributed uniformly. This continues with decreasingr, till
one reaches the tricritical point (Tt ,r t), where the second
order transition becomes first-order transition, as there
phase separation between ferromagnetic (AB-rich! and non-
magnetic (V-rich! components. The ferromagnetic comp
nent retains the magnetic order, thus here we have a th
phase coexistence. As seen in Fig. 1, larger values ofK raise
the tricritical point as phase separation is favored, wh
lower values ofK have the reverse effect.

We study the dynamics of theABV system using Ka-
wasaki spin-exchange kinetics~with Metropolis acceptance
rates!, which individually conserves numbers ofA (si51), B

FIG. 1. Mean-field~MF! phase diagrams in the (T,h50,r)
plane for the Hamiltonian in Eq.~3! with M50. The labelsP andF
refer to the paramagnetic and ferromagnetic phases, respect
All parameters are measured in units ofJ, i.e., J51. We show
phase diagrams for~a! K51.5, ~b! K50.5, and~c! K520.5. The
parameter values for our dynamical simulations are marked asX’s
in ~a!–~c!.
05613
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(si521), andV (si50). We further put a constraint on th
kinetics that permits onlyV-mediated dynamics, i.e.,A↔V
and B↔V interchanges are permitted but notA↔B inter-
changes. However, in contrast to most earlier works, we h
studied physical situations with appreciableV concentrations
so as to investigate domain coarsening in both regions of
phase diagram, namely regions with two-phase and th
phase coexistence. The quenches we consider in our sim
tions are marked asX’s in the phase diagrams of Fig. 1—w
always consider the symmetric case withNA5NB or m50.

IV. NUMERICAL RESULTS

Our MC simulations were performed onN2 lattices~i.e.,
dimensionalityd52) with periodic boundary conditions in
both directions. The results presented here use a seque
updating procedure but similar results are obtained with r
dom updates. The initial condition for each run consisted
a randomly distributed mixture of 0’s,61’s, mimicking the
homogeneous initial state at high temperatures. The sys
is then evolved at a quenched temperature in the multiph
region, so that it is in a far-from-equilibrium state. For th
results presented in this paper, the concentrations ofA, B,
andV werecA5cB50.45,cV50.1. As mentioned earlier, al
energy scales are measured in units ofJ. We fix the tempera-
ture T50.5, and vary the parameterK. We stress that the
results presented here are generic~up to prefactors and time
scales! for a wide range of compositions and temperature

We will show numerical results for various evolutio
morphologies and their time-dependent properties. The
tistical features we focus on are as follows:~a! correlation
functions of the two order parameters, i.e.,si and si

2 ; ~b!
domain-size distribution functions; and~c! characteristic do-
main length scales. We will provide precise definitions
these quantities subsequently. All statistical quantities
calculated as an average over ten independent runs for
tem sizesN5512.

A. Domain morphologies

Let us start by showing typical evolution morphologi
from a random initial condition. Figures 2~a!–2~c! show evo-
lution pictures forK51.5, 0.5, and20.5, respectively. No-
tice that Figs. 2~a! and 2~b! correspond to quenches into th
three-phase region@see Figs. 1~a! and 1~b!#, whereas Fig.
2~c! corresponds to a quench into the two-phase region@see
Fig. 1~c!#. In Fig. 2~a!, one sees a clear evolution of thre
kinds of domains, namely,A, B, andV rich. We term this as
the ‘‘blob’’ ~B! morphology. Here, all three kinds of inter
faces (AV, BV, andAB) are present. The evolution in Fig
2~b! also corresponds to the three-phase region, but the
rameter values are closer to the phase boundary with
two-phase region. Here, we see thatA- and B-rich domains
are separated by a thin layer ofV’s. We term this as the
‘‘coated’’ ~C! morphology. The thickness of the coatin
layer of V’s does not grow in time. The excessV’s form
blobs, as we have confirmed from simulations at higher c
centrations ofV. The distinct feature of this regime is th
absence ofAB interfaces.

ly.
9-4
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KINETICS OF PHASE SEPARATION IN TERNARY MIXTURES PHYSICAL REVIEW E64 056139
Finally, Fig. 2~c! shows the evolution of only two kinds o
domains that areA rich and B rich with V’s interspersed
uniformly—as dictated by thermodynamics. This is simi
to phase separation in two-component systems. This m
phology will be referred to as the ‘‘dispersed’’~D! morphol-
ogy. A microscopic layer ofV’s does coat theAB interfaces
in this regime as well. This is expected on simple energ
grounds, as shifting a vacancy from the interior of anA ~or
B)-rich domain to theAB interface gains an energy of 2
Note that this argument applies only to the two-phase
gime, andV’s do not form a macroscopic phase as in theC
morphology. We should stress that the early-time frame
Fig. 2~c! (t5104 MCS where MCS is Monte Carlo steps!
actually appears to exhibit aC-type morphology. This is be
cause the length scales at initial times are so small that e
one layer is significant. At later times, when the length sca
are larger and local equilibrium is established, the phase
gram of Fig. 1 is relevant.

We next consider the reason why two distinct dom
morphologies occur in the three-phase region. This can

FIG. 2. Evolution pictures for the spin-1 model with vacanc
mediated spin-exchange kinetics. Our Monte Carlo~MC! simula-
tions were performed onN2 lattices (N5512) with periodic bound-
ary conditions in both directions. The initial condition for each r
consisted of a random mixture ofA, B, V with cA5cB50.45 and
cV50.1. In the evolution pictures,A’s are marked in gray;B’s are
unmarked; andV’s are marked asX’s. The snapshots are labeled b
the appropriate evolution time subsequent to the quench in M
Carlo steps~MCS!. ~For clarity, we only show a 1282 corner of the
evolving system.! The parameter values~measured in units ofJ)
wereT50.5, and~a! K51.5; ~b! K50.5; and~c! K520.5. Phase
diagrams for these parameter values are shown in Fig. 1.
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understood from the following simple considerations atT
50. Consider a typical domain geometry on a square lat
of linear sizeL with periodic boundary conditions~Fig. 3!.
We focus on the case withNA5NB5yL and NV5(1
22y)L. In the ground state, we can have two possible c
figurations of domains as shown in Figs. 3~a! ~blob! and 3~b!
~coat!. The configuration in Fig. 3~a! is the lowest-energy
configuration of theB morphology as all possible interface
occur only once. In the configuration of Fig. 3~b!, we have
distributedV’s to eliminate theAB interface at the cost o
forming an extraAV andBV interface. In this geometry, it is
straightforward to calculate the energy of the two configu
tions as

EB522Ly~J1K !1~3J1K !L,

EC522Ly~J1K !1~2J12K !L. ~8!

A comparison of the two energies shows that theB morphol-
ogy is favored whenJ,K, while theC morphology is pre-
ferred whenJ.K. Though the geometrical configuration fo
which the above argument has been presented is ra
simple, it demonstrates that anAV plus BV interface is pre-
ferred over anAB interface whenJ.K, and vice versa when
J,K. Thus, for the same region of three-phase coexisten
different morphologies can arise depending on the ratio
the two interactions. However, we note that the coat form

te

FIG. 3. Typical examples ofT50 morphologies for three-phas
coexistence ind52. ~a! Blob (B), where all possible interface
(AV, BV, andAB) are present.~b! Coated (C), where onlyAV and
BV interfaces are present.
9-5
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KUMELA TAFA, SANJAY PURI, AND DEEPAK KUMAR PHYSICAL REVIEW E 64 056139
tion of V’s in excess of a couple of layers has no additio
energetic advantage in the context of reducingAB surface
tension. Therefore, the coat thickness is expected to satu
out to an equilibrium value, as we have confirmed nume
cally. Subsequent to this saturation, additionalV’s form
blobs as this is entropically favorable. Thus, in t
asymptotic time regime, there should be no difference
tween two-point correlation functions forB andC morpholo-
gies, as the fixed length scale of the vacancy ‘‘wetting laye
at AB interfaces is irrelevant compared to the diverge
length scales of theA, B, andV domains. In practice, espe
cially for small V concentrations, the crossover time to th
asymptotic regime may be excessively delayed.

The above arguments, and simple extensions ther
clarify the observation of different morphologies in earli
simulations, which were reviewed in Sec. II.

B. Correlation functions and domain-size distributions

We will now consider various statistical properties of t
evolution depicted in Figs. 2~a!–2~c!. We shall first present a
detailed discussion for the blob morphology in Fig. 2~a!.
Since the discussion for other morphologies is similar,
will present briefer discussions of these, mainly highlighti
differences from the blob morphology. The simplest char
terization of the morphology is by two-point correlatio
functions and the domain-size distribution functions. He
we have two kinds of correlation functions of spin variable
The first one is defined as follows:

C~r ,t !5^s~RW ,t !s~RW 1rW,t !&2^s~RW ,t !&^s~RW 1rW,t !&, ~9!

wheres(RW ,t) is the spin variable at a discrete siteRW at time
t; and the angular brackets refer to an averaging over in
pendent runs and noise realizations. This correlation func
refers to theA-, B-domain morphology. The second correl
tion function ofs(RW ,t)2 @or 12s(RW ,t)2# is also defined in a
similar fashion as follows:

D~r ,t !5^s~RW ,t !2s~RW 1rW,t !2&2^s~RW ,t !2&^s~RW 1rW,t !2&,
~10!

and refers to theV-domain morphology.
The domain-size distributionP( l ,t), where l P@0,̀ #, is

obtained by examining the zero crossings of order-param
profiles along horizontal and vertical cross sections of
lattice @30#. We separately consider distributions for theA, B
domains, and theV domains. The distributionP( l ,t) is nor-
malized as*0

`dlP( l ,t)51.
Figure 2~a! suggests that the evolving morphology is se

similar in time, and we expect the correlation functions
exhibit a dynamical-scaling formC(r ,t)5g(r /L);D(r ,t)
5h(r /L), where the master functionsg(x) and h(x) are
independent of time@31#. Figure 4~a! superposes data from
different times forC(r ,t)/C(0,t) vs r /LC , whereLC is de-
fined as the distance over which the correlation function
cays to half its maximum value. The solid line in Fig. 4~a!
refers to the scaled correlation function for the spin-1/2 Is
model with Kawasaki kinetics~also obtained numerically!.
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Because of the smallV concentration (cV50.1), the correla-
tion function for the blob morphology does not differ appr
ciably from that for the spin-1/2 Ising model. More substa
tial differences are seen when the components are prese
approximately equal proportions, as in the MC simulatio
of the three-state Potts model by Jeppesen and Mouri
@24#. Figure 4~b! is the corresponding scaling plot o
D(r ,t)/D(0,t) vs r /LD . The good data collapse in Figs. 4~a!
and 4~b! confirms the dynamical scaling of the correlatio
functions.

The corresponding dynamical-scaling property for t
domain-size distribution isP( l ,t)5L21f ( l /L). In this paper,
we focus on the distribution forA, B domains as that is
physically more relevant. Figure 5 superposes data from
ferent times forP( l ,t)LP vs l /LP , where the characteristic
length scaleLP is defined from the domain distribution func
tion asLP5^ l &. ~In the scaling regime, we expectLC , LD ,
and LP to be equivalent upto prefactors.! Again, the data
collapse is seen to be excellent in Fig 5~a!, which is a direct
plot of the data. The solid line in Fig. 5~a! is the scaled
domain-size distribution for the spin-1/2 Ising model~also
obtained numerically!, and is in good agreement with ou
numerical data for theABV model. Figure 5~b! is a linear-

FIG. 4. Scaling plot of correlation functions for the evolutio
depicted in Fig. 2~a!. We calculateC(r ,t) andD(r ,t) ~correlation
functions for thes field and s2 field, respectively! as an average
over ten independent runs on lattices of sizeN5512. ~a! Plot of
C(r ,t)/C(0,t) vs r /LC for three different times—denoted by th
symbols indicated. The length scaleLC is defined as the distanc
over which the correlation function decays to half its maximu
value. The solid line denotes the scaled correlation function~at t
5106 MCS) obtained from MC simulations of the spin-1/2 Isin
model with Kawasaki spin-exchange kinetics.~b! Plot of
D(r ,t)/D(0,t) vs r /LD for the same times as in~a!.
9-6
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KINETICS OF PHASE SEPARATION IN TERNARY MIXTURES PHYSICAL REVIEW E64 056139
log plot of the data in Fig. 5~a!. The tail of the scaling func-
tion f (y) exhibits a characteristic exponential decay. W
have first observed this in the context of nonconserved
main growth@30# and expect it to be a universal feature
phase-ordering systems. In our earlier study of nonconse
domain growth with barriers, the exponential tail off (y)
resulted in an asymptotically stretched-exponential beha
for the spin autocorrelation function@30#.

Figure 6 plotsL(t) vs t for length scales obtained from
the two correlation functions~see Fig. 4!; and the domain-
size distribution function~see Fig. 5!. The time dependenc
of all the data sets is consistent with the LS growth la
L(t);t1/3.

We now turn to a quantitative discussion for the other t
morphologies. Recall that Fig. 2~b! showed the evolution for
parameter valuesT50.5, K50.5, which also corresponds t
three-phase coexistence@see Fig. 1~b!#, but with a coating
morphology. The correlation functionsC(r ,t) and D(r ,t)
for theC morphology are expected to be similar to those
the B morphology, particularly at late times. The reason
that, as far as the two-point correlation functions are c
cerned, the distribution ofV’s in bothC andB morphologies
becomes statistically identical in the asymptotic time regim
The finite thickness of the coating layer atAB interfaces is
irrelevant as other length scales in the system dive
Clearly, higher-order correlation functions are required

FIG. 5. Scaling plot of domain-size distributions ofA, B do-
mains for the evolution depicted in Fig. 2~a!. We plot P( l ,t)LP vs
l /LP for three different times—denoted by the symbols indicat
The length scaleLP5^ l &, i.e., the first moment of the probabilit
distribution. The averaging statistics is the same as that for Fig
The solid line denotes the scaled probability distribution for
spin-1/2 Ising model att5106 MCS. We present the numerica
data on~a! a direct plot and~b! a linear-log plot.
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quantify the differences in the two-domain morphologies.
practice, especially for smallV concentrations, the crossove
time to this asymptotic regime may be excessively delay
The final frame (t5106 mcs! in Fig. 2~b! shows incipient
cluster formation byV domains. We have confirmed numer
cally that the onset of clustering ofV’s is faster at higher
values of theV concentration.

Figure 2~c! shows evolution pictures forT50.5,
K520.5, which corresponds to two-phase coexistence w
AV-rich andBV-rich domains@see Fig. 1~c!#. There is also a
microscopic layer ofV at theAB interfaces, as this lowers
the system energy. However, theV-rich layer is thermody-
namically irrelevant. For these parameter values, theV’s
play no significant role in determining the asymptotic mo
phology, though, of course, they do mediate the dynamics
this regime, we expect the system evolution to be asympt
cally equivalent to that for the spin-1/2 Ising model.

The correlation function data for theC andD morpholo-
gies also exhibits dynamical scaling. For brevity, we do n
present this data here. Figure 7~a! superposes data fo
C(r ,t)/C(0,t) vs r /LC from theB, C, andD morphologies at
t5106 MCS. For reference, we also include the correlati
function for the spin-1/2 Ising model–denoted as a solid li
We see that the data sets forB andC are numerically com-
parable; and differ from the scaled correlation function
theD morphology. For even larger values ofcV , theB andC
morphologies should still be comparable at sufficiently la
times, but would differ substantially from the D and Isin
morphologies. Figure 7~b! superposes data fo
D(r ,t)/D(0,t) vs r /LD from the B and C morphologies at

.

4.

FIG. 6. Time dependence of characteristic length scales for
evolution depicted in Fig. 2~a!. We plotL(t) vs t for three measures
of the length scale, i.e.,LC andLP refer to theA-, B-domain scale
obtained fromC(r ,t) andP( l ,t), respectively; andLD refers to the
V-domain scale obtained fromD(r ,t). The solid line superposed o
each data set denotes the best fit to the functional formL(t)5a
1btx, and the best-fit exponentx is specified on the figure. The
error estimates for the exponents are60.01.
9-7
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KUMELA TAFA, SANJAY PURI, AND DEEPAK KUMAR PHYSICAL REVIEW E 64 056139
t5106 MCS ~this correlation function is not meaningful i
the context of theD morphology!.

Figure 8~a! is a direct plot of data forP( l ,t)L vs l /LP for
theB, C, andD morphologies. As before, the solid line refe
to the corresponding data for the spin-1/2 Ising model.
theD morphology, the domain-size distributionP( l ,t) is ob-
tained by binarizing the evolution pictures in Fig. 2~c!, i.e., a
0 is mapped to11 or 21 depending on the majority of it
neighbors. Fig. 8~b! is a linear-log plot of the data in Fig
8~a!, and again exhibits the characteristic exponential de
of the scaling function for the domain-size probability dist
bution. In this case, the numerical data for the three m
phologies appears to be numerically comparable to that
the spin-1/2 Ising case.

Finally, Fig. 9 is a plot of characteristic domain scales
the C @Fig. 9~a!# and D @Fig. 9~b!# morphologies and is
analogous to Fig. 6. For theC morphology, we show~i!
length scalesLC and LP for the A, B domains—obtained
from the correlation function and the probability distributio
respectively; and~ii ! the length scaleLD for the V domains
obtained from the appropriate correlation function. Not
that the maximum length scale for theV domains in Fig. 9~a!
is approximately 2 units, so the impression of growth
somewhat illusory. For theD morphology, we show the
length scalesLC and LP . In both cases, the length scal
~apart fromLD! are consistent with a LS growth law.

FIG. 7. ~a! Superposition of numerical data forC(r ,t)/C(0,t) vs
r /LC for theB, C, andD morphologies. The solid line refers to th
corresponding data for the spin-1/2 Ising model. All data sets
computed at t5106 MCS. ~b! Superposition of data for
D(r ,t)/D(0,t) vs r /LD for the B and C morphologies. Both data
sets are computed att5106 MCS.
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V. SUMMARY AND DISCUSSION

Let us conclude this paper with a brief summary and d
cussion of the results presented here. We have undertak
detailed MC study of phase-separation kinetics in tern
(ABC) mixtures. Without loss of generality, we focus on th
ABV model, where one of the components~vacancy orV) is
passive, i.e., pairwise interactions involvingV’s are identi-
cally zero. Furthermore, we consider constrained Kawas
spin-exchange dynamics, where onlyA↔V, B↔V inter-
changes are allowed butA↔B interchanges are forbidden
However, we should clarify that we have also performed M
simulations with unconstrained dynamics, where all types
interchanges are permitted. The numerical results theref
are very similar to those presented here upto a slight re
malization of time scales. This is because the barrier
A↔B interchanges at domain interfaces~i.e., EB512J in d
52) are considerably higher than those forA↔V andB↔V
interchanges~i.e., EB56J in d52). Thus, especially at low
temperatures, the segregation dynamics is primarily dri
by V’s—regardless of whether or notA↔B interchanges are
allowed.

In this paper, we focus on mixtures with compositioncA
5cB50.45 andcV50.1. Nevertheless, our results are typic
for a wide range of compositions. Our results demonstr
that there are three distinct evolution morphologies aris
from a disordered initial condition—two-phase (AV-rich and
BV-rich! coexistence; three-phase coexistence with coa
~only AV and BV interfaces!; and three-phase coexistenc
with blobs~all possible interfaces!. We provide heuristic ar-

re

FIG. 8. ~a! Superposition of data forP( l ,t)LP vs r /LP for theB,
C, andD morphologies. The solid line refers to the correspond
data for the spin-1/2 Ising model. All data sets are computedt
5106 MCS. ~b! Data from~a!, replotted on a linear-log scale.
9-8
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KINETICS OF PHASE SEPARATION IN TERNARY MIXTURES PHYSICAL REVIEW E64 056139
guments to understand the emergence of these morpholo
at zero temperature, where entropic effects are not relev
These arguments also clarify the nature of patterns obse
in earlier simulations of ternary mixtures, in the context
ABV models and three-state Potts models. For nonzero t
peratures, we expect the coating morphology to be asy
totically equivalent to the blob morphology for reasons
have discussed in Sec. IV.

FIG. 9. ~a! Characteristic length scales for the evolution d
picted in Fig. 2~b!. We plotL(t) vs t for LC , LP , andLD—denoted
by the specified symbols. The nonlinear fits are obtained as in
6, and the corresponding best-fit exponents~x! are specified on the
figure. ~b! Analogous to~a!, but for the evolution depicted in Fig
2~c!.
.
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We provide comprehensive numerical results for tim
dependent behavior in all the three cases discussed ab
There is a strong degree of universality in various dynam
properties, which we would like to highlight here. First, w
expect the correlation functions to be asymptotically equi
lent for the blob~B! and coat~C! morphologies; and for the
dispersed~D! and Ising morphologies. Our numerical resu
for the correlation functions appear to point in this directio
Second, our numerical results suggest that theA-, B-domain-
size distributions have similar scaling forms for all the mo
phologies considered. An important feature of the doma
size distribution is the exponential decay of the t
region—an observation we have also made earlier in the c
text of nonconserved domain growth@30#. We expect this to
be a universal feature of phase-ordering systems with imp
tant implications for various properties, including the au
correlation function. Third, the asymptotic domain grow
law is always consistent with the LS law,L(t);t1/3, though
the time scales of growth are substantially different in t
three cases considered in this paper. This is because o
geometric constraints imposed by the availability ofV’s to
facilitate diffusion.

Before concluding this paper, we should mention that
have also obtained numerical results for the autocorrela
function in our MC simulations. In earlier work on spin-
models with local kinetic barriers@30#, we have modeled
spin dynamics using dichotomic Markov processes. We u
this simple model to obtain an analytic expression for
autocorrelation function, which was in good agreement w
our numerical results. At present, we are generalizing
approach to the context of vacancy-mediated phase sep
tion in the ABV model. Details of this approach and com
parisons with numerical results will be reported at a la
stage@32#.
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